Phase Equilibrium

2-C Eutectic Systems Example: Diopside - Anorthite No solid solution

Fig. 6.11. Isobaric T-X phase diagram at atmospheric pressure. After Bowen (1915), Amer. J. Sci. 40, 161-185.

Also note:

- The last melt to crystallize in any binary eutectic mixture is the eutectic composition
- Equilibrium melting is the opposite of equilibrium crystallization
 - Thus the first melt of any mixture of Di and An must be the eutectic composition as well

Fractional crystallization:

Since solids are not reactants in eutectic-type continuous reactions (e.g., $liq_A \rightarrow anorthite + liq_B$), the liquid path is not changed

Only the final rock will differ: = *eutectic* X, and not *bulk* X

Fig. 6.11. Isobaric T-X phase diagram at atmospheric pressure. After Bowen (1915), Amer. J. Sci. 40, 161-185.

Partial Melting:

if remove liquid perfectly as soon as it forms:
melt Di + An to 1274°C

Adiscontinuous reaction: Di + An -> eutectic liquid d

Aconsume *either* **Di** *or* **An first** *depending on bulk X*

Athen melting solid = pure Di or An, jump to 1-C system

Thus must heat 118 or 279°C before next melt!

Water-Salt Eutectic Systems

Ammonium Hydroxide System

- Household cleaning products
- Outer solar system, where cold enough for NH₃ to condense from solar nebula
 - Solar $[O]/[N] \approx 10 \rightarrow low \% NH_3$
- Eutectic at -100°C may help sustain liquids on, e.g., Enceladus

Hydrated Salt Peritectic Systems

C. Binary Peritectic Systems Three phases, enstatite = forsterite + SiO_2

Reaction runs to the left → no Fo + Qtz igneous rocks!

> Figure 6.12. Isobaric T-X phase diagram of the system Fo-Silica at 0.1 MPa. After Bowen and Anderson (1914) and Grieg (1927). Amer. J. Sci.

Desert soils = non-equilibrium assemblages

Table 1. Crystalline components (amorphous-free) of the Rocknest scoop 5 soil.

	Mineral	Wt.%	2σ
	Andesine (~An50)	42.9%	3.4%
	Forsterite (~Fo58)	20.5%	2.6%
	Augite	16.7%	3.5%
	Pigeonite	11.4%	3.9%
	Sanidine	2.1%	1.9%
	Magnetite	1.8%	1.1%
	Quartz	1.7%	0.7%
	Anhydrite	1.4%	0.9%
	Hematite	0.8%	1.1%
	Ilmenite	0.7%	1.2%

Bish et al. (2013)

C. Binary Peritectic Systems Three phases, enstatite = forsterite + SiO_2

Start with liquid, assume isobaric: F = C - ρ + 1 = ? 2! Cool bulk composition a (42%) to 1660°C: Cristobalite forms

$$\phi = 2$$

F = 2 - 2 + 1 =
X_{liq} = f(T)

C. Binary Peritectic Systems

As T lowered, X_{liq} follows path to c, the eutectic At 1543°C, enstatite forms: d Now $\phi = 3$ and F = 2 - 3 + 1 = 0 invariant **Discontinuous reaction:** liq = En + CrstStay at this T until liq is consumed Then have En + Crst $\phi = 2$ F = 2 - 2 + 1 = 1univariant At 1470°C get polymorphic transition Crst -> Trid Another invariant discontinuous rxn

Next cool f = 13 wt. % At 1800°C get olivine (Fo) forming $\phi = 2$ F = 2 - 2 + 1 = 1univariant $X_{liq} = f(T)$ At 1557°C ... **Opx (En) forms** $\phi = 3$ F = 2 - 2 + 1 = 0invariant

- i = "peritectic" point
- At 1557°C have colinear Fo-En-liq
 - ♦ geometry indicates a reaction: Fo + liq = En
 - \bullet consumes olivine (and liquid) \rightarrow resorbed textures

When is the reaction finished?

When a phase is used up Which phase will it be? Since the bulk composition lies between En and Fo, liq must be used up first

Incongruent Melting of Enstatite

• Melt of En does not \rightarrow melt of same composition

• Rather $En \rightarrow Fo + Liq i$ at the peritectic

Partial Melting of Fo + En (harzburgite) mantle \bullet En + Fo also \rightarrow first liq = *i* \bullet Remove *i* and cool \bullet Result = ?

Fo

Fn

Pressure Effects

Higher P:

- Raises melting point
- Shifts eutectic position (and thus X of first melt)
- Can change peritectic \rightarrow double eutectic

Figure 6.15. The system Fo-SiO₂ at atmospheric pressure and 1.2 GPa. After Bowen and Schairer (1935), Am. J. Sci., Chen and Presnall (1975) Am. Min. Cool X = n Immiscible Liquids

- At 1960°C hit solvus exsolution
 - \rightarrow 2 liquids o and p

 $\phi = 2 \quad F = 1$

both liquids follow solvus

```
At 1695°C get Crst also
```


Hydrated Salt Peritectic Systems

Hydrated Salt Peritectic Systems

D. Solid Solution with Eutectic: Ab-Or (the alkali feldspars)

Eutectic liquidus minimum

Cool composition a: first solid at b: 1090°C last liquid at e: 1000°C don't reach eutectic point final solid = d 780°C intersect solvus -> 2 solid phases: exsolution (perthite) → Mineral-pair geothermometry

> **Figure 6.16.** T-X phase diagram of the system albiteorthoclase at 0.2 GPa H_2O pressure. After Bowen and Tuttle (1950). J. Geology.

Figure 6.17. The Albite-K-feldspar system at various H₂O pressures. (a) and (b) after Bowen and Tuttle (1950), J. Geol, (c) after Morse (1970) J. Petrol.