Chapter 9: Trace Elements

Don't *govern the appearance* of a phase, but enter various phases by *substitution*

Chapter 9: Trace Elements

Note magnitude of major element changes

Figure 8.2. Harker variation diagram for 310 analyzed volcanic rocks from Crater Lake (Mt. Mazama), Oregon Cascades. Data compiled by Rick Conrey (personal communication). From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

Chapter 9: Trace Elements

Now note magnitude of trace element changes

Figure 9.1. Harker Diagram for Crater Lake. From data compiled by Rick Conrey. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

Element Distribution

Goldschmidt's rules – a reminder (simplistic, but useful)

 2 ions with the same valence and radius should exchange easily and enter a solid solution in amounts equal to their overall proportions

How does Rb behave? Ni?

1		Ъ	1 0	11	77				•	0							18
н		R	b to	llow	/s K	\rightarrow	Ksp	ar, n	nica	, &							He
1.0079	2	1a	te n	nelt								13	14	15	16	17	4 0026
3	4	10										5	6	7	8	9	10
Li	Ве											в	С	N	0	F	Ne
6.941				11.000		~ _	_1;					10.811	12.011	14.007	15.999	18.998	20.18
11	12	IN	1 10	IIOW	S IVI	g 7	OII	vine				13	14	15	16	17	18
Na	Mg	122.25										AI	Si	P	S	СІ	Ar
22.99		3	4	5	6	7	8	9	10	11	12	26.982	28.086	30.974	32.066	35.453	39.948
19		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
к	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098		44.956	47.88	50.941	51.996	54.938	55.847	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.8
37		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85 468		88.906	91.224	92.906	95.94	(97.91)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.9	131.29
66		57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Po	At	Rn
132.91		138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87		89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub						
(223)		(227)	(261.1)	(262.1)	(263.1)	(262.1)	(265.1)	(266.1)	(269)	(272)	(277)						

Lanthanide Series

A ctinide Series

58		59	60	61	62	63	64	65	66	67	68	69	70	71		
e C	e	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu		
140	.12	140.91	144.24	(144.9)	150.36	151.97	157.25	158.93	162.5	164.93	167.26	168.93	173.04	174.97		
90		91	92	93	94	95	96	97	98	99	100	101	102	103		
т	ħ	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
232	.04	231.04	238.03	(237)	(244.1)	(243.1)	(247.1)	(247.1)	(251.1)	(252.1)	(257.1)	(258.1)	(259.1)	Group Leo	jend stal 🔲 Actinidad	
														Alkali Mi Alkali Ea Metal Trans. M	arth Lanthanic Non-meta 1et. Halogen Noble Gas	le: il

Goldschmidt's rules

2. If 2 ions have a similar radius and the same valence: the smaller ion is preferentially incorporated into the solid over the liquid

Fig. 6.10. Isobaric T-X phase diagram at atmospheric pressure After Bowen and Shairer (1932), Amer. J. Sci. 5th Ser., **24**, 177-213. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. 3. If 2 ions have a similar radius, but different valence: the ion with the higher charge is preferentially incorporated into the solid over the liquid

Fig. 6.8. Isobaric T-X phase diagram at atmospheric pressure. After Bowen (1913) Amer. J. Sci., 35, 577-599.

Chemical Fractionation

 The uneven distribution of an ion between two competing (equilibrium) phases Exchange equilibrium of a *component i* between two *phases* (solid and liquid)

Reaction:
$$i_{\text{(liquid)}} = i_{\text{(solid)}}$$

eq. 9.2 $K = \frac{a^{i^{\text{solid}}}}{a^{i^{\text{liquid}}}} = \frac{\gamma_i X_i^{\text{solid}}}{\gamma_i X_i^{\text{liquid}}}$

K = *equilibrium constant*

- Trace element concentrations are in the Henry's Law region of concentration, so their activity varies in direct relation to their concentration in the system
- Thus if X_{Ni} in the system doubles the X_{Ni} in all phases will double
 - This does not mean that X_{Ni} in all phases is the same, since trace elements do fractionate. Rather the X_{Ni} within each phase will vary in proportion to the system concentration

 For dilute solutions can substitute D (partition coefficient) for K_D:

$$\mathsf{D} = \frac{\mathsf{C}_S}{\mathsf{C}_L}$$

Where C_s = the concentration of some element in the solid phase

 incompatible elements are concentrated in the melt

$(K_D \text{ or } D) \ll 1$

compatible elements are concentrated in the solid

$K_D \text{ or } D \gg 1$

Commonly standardized to mantle compositions (olivine, pyroxenes, and perhaps garnet)

Thus the major elements Mg and Fe would usually be referred to as compatible, while K and Na as incompatible

- Incompatible elements commonly → two subgroups
 - Smaller, highly charged *high field strength* (*HFS*) *elements* (REE, Th, U, Ce, Pb⁴⁺, Zr, Hf, Ti, Nb, Ta)
 - Low field strength *large ion lithophile (LIL) elements* (K, Rb, Cs, Ba, Pb²⁺, Sr, Eu²⁺) are more mobile, particularly if a fluid phase is involved

Compatibility depends on minerals and melts involved.

Which are incompatible? Why?

Table 9-1. Partition Coefficients (C_S/C_L) for Some Commonly Used TraceElements in Basaltic and Andesitic Rocks

		Olivine	Орх	Срх	Garnet	Plag	Amph	Magnetite
Rb		0.010	0.022	0.031	0.042	0.071	0.29	
Sr		0.014	0.040	0.060	0.012	1.830	0.46	
Ba		0.010	0.013	0.026	0.023	0.23	0.42	
Ni		14	5	7	0.955	0.01	6.8	29
Cr		0.70	10	34	1.345	0.01	2.00	7.4
La		0.007	0.03	0.056	0.001	0.148	0.544	2
Ce	nts	0.006	0.02	0.092	0.007	0.082	0.843	2
Nd	me	0.006	0.03	0.230	0.026	0.055	1.340	2
Sm	Ele	0.007	0.05	0.445	0.102	0.039	1.804	1
Eu	rth	0.007	0.05	0.474	0.243	0.1/1.5*	1.557	1
Dy	Eai	0.013	0.15	0.582	1.940	0.023	2.024	1
Er	re	0.026	0.23	0.583	4.700	0.020	1.740	1.5
Yb	Ra	0.049	0.34	0.542	6.167	0.023	1.642	1.4
Lu		0.045	0.42	0.506	6.950	0.019	1.563	

Data from Rollinson (1993).

* Eu³⁺/Eu²⁺ Italics are es

 For a rock, determine the bulk distribution coefficient D for an element by calculating the contribution for each mineral

eq. 9.4:
$$D_i = \Sigma W_A D_i_A$$

 W_A = weight % of mineral A in the rock

 D_{i_A} = partition coefficient of element i in mineral A

		Olivine	Орх	Срх	Garnet	Plag	Amph	Magnetite
Rb		0.010	0.022	0.031	0.042	0.071	0.29	
Sr		0.014	0.040	0.060	0.012	1.830	0.46	
Ba		0.010	0.013	0.026	0.023	0.23	0.42	
Ni		14	5	7	0.955	0.01	6.8	29
Cr		0.70	10	34	1.345	0.01	2.00	7.4
La		0.007	0.03	0.056	0.001	0.148	0.544	2
Ce	nts	0.006	0.02	0.092	0.007	0.082	0.843	2
Nd	me	0.006	0.03	0.230	0.026	0.055	1.340	2
Sm	Ele	0.007	0.05	0.445	0.102	0.039	1.804	1
Eu	th	0.007	0.05	0.474	0.243	0.1/1.5*	1.557	1
Dy	Eai	0.013	0.15	0.582	1.940	0.023	2.024	1
Er	re	0.026	0.23	0.583	4.700	0.020	1.740	1.5
Yb	Ř	0.049	0.34	0.542	6.167	0.023	1.642	1.4
Lu		0.045	0.42	0.506	6.950	0.019	1.563	
Data from Rollinson (1993).* Eu ³⁺ /Eu ²⁺ Italics are estimated								estimated

Table 9-1. Partition Coefficients (C_S/C_L) for Some Commonly Used TraceElements in Basaltic and Andesitic Rocks

Example: hypothetical garnet lherzolite = 60% olivine, 25% orthopyroxene, 10% clinopyroxene, and 5% garnet (all by *weight*), using the data in Table 9.1, is:

 $\overline{D_{Er}} = (0.6 \cdot 0.026) + (0.25 \cdot 0.23) + (0.10 \cdot 0.583) + (0.05 \cdot 4.7) = 0.366$

- Trace elements strongly partitioned into a single mineral
- D (Ni olivine) in Table 9.1 = 14

Figure 9.1a. Ni Harker Diagram for Crater Lake. From data compiled by Rick Conrey. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

- Incompatible trace elements concentrate → liquid
- Reflect the proportion of liquid at a given state of crystallization or melting

Figure 9.1b. Zr Harker Diagram for Crater Lake. From data compiled by Rick Conrey. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

Trace Element Behavior

 The concentration of a *major* element in a phase is usually buffered by the system, so that it varies little in a phase as the system composition changes

At a given T we could vary X_{bulk} from $35 \rightarrow 70 \% Mg/$ Fe without changing the composition of the melt or the olivine Trace element concentrations are in the Henry's Law region of concentration, so their activity varies in direct relation to their concentration in the system

Thus if X_{Ni} in the system doubles the X_{Ni} in all phases will double

Because of this, the *ratios* of trace elements are often superior to the concentration of a single element in identifying the role of a specific mineral

- K/Rb often used → the importance of amphibole in a source rock
 - K & Rb behave very similarly, so K/Rb should be ~ constant
 - Amphibole has a D of about 1.0 for K and 0.3 for Rb
 - Other factors being equal, a magma produced by partial melting of an amphibole-bearing source rock would have a lower K/Rb than one derived from amphibole-free source

Ta	ble	9-1. Parti	tion Coeff Elements	ficients ((in Basali	C _S /C _L) for tic and An	Some Con desitic Roc	nmonly U ks	sed Trace
		Olivine	Орх	Срх	Garnet	Plag	Amph	Magnetite
Rb		0.010	0.022	0.031	0.042	0.071	0.29	
Sr		0.014	0.040	0.060	0.012	1.830	0.46	
Ва		0.010	0.013	0.026	0.023	0.23	0.42	
Ni		14	5	7	0.955	0.01	6.8	29
Cr		0.70	10	34	1.345	0.01	2.00	7.4
La		0.007	0.03	0.056	0.001	0.148	0.544	2
Ce	nts	0.006	0.02	0.092	0.007	0.082	0.843	2
Nd	B	0.006	0.03	0.230	0.026	0.055	1.340	2
Sm	Шe	0.007	0.05	0.445	0.102	0.039	1.804	1
Eu	극	0.007	0.05	0.474	0.243	0.1/1.5*	1.557	1
Dy	Eai	0.013	0.15	0.582	1.940	0.023	2.024	1
Er	e	0.026	0.23	0.583	4.700	0.020	1.740	1.5
Yb	Ra	0.049	0.34	0.542	6.167	0.023	1.642	1.4
Lu		0.045	0.42	0.506	6.950	0.019	1.563	
_	_					- 3+ <i>i</i> = 2+		

Sr and Ba (also incompatible elements)

- Sr is excluded from most common minerals except plagioclase
- Ba similarly excluded except in alkali feldspar

Table 9-1.	Partition Coefficients (C_S/C_L) for Some Commonly Used Trace
	Elements in Basaltic and Andesitic Rocks

		Olivine	Орх	Срх	Garnet	Plag	Amph	Magnetite
Rb		0.010	0.022	0.031	0.042	0.071	0.29	
Sr		0.014	0.040	0.060	0.012	1.830	0.46	
Ba		0.010	0.013	0.026	0.023	0.23	0.42	
Ni		14	5	7	0.955	0.01	6.8	29
Cr		0.70	10	34	1.345	0.01	2.00	7.4
La		0.007	0.03	0.056	0.001	0.148	0.544	2
Ce	nts	0.006	0.02	0.092	0.007	0.082	0.843	2
Nd	me	0.006	0.03	0.230	0.026	0.055	1.340	2
Sm	Ele	0.007	0.05	0.445	0.102	0.039	1.804	1
Eu	ţh	0.007	0.05	0.474	0.243	0.1/1.5*	1.557	1
Dy	Eai	0.013	0.15	0.582	1.940	0.023	2.024	1
Er	re	0.026	0.23	0.583	4.700	0.020	1.740	1.5
Yb	Ra	0.049	0.34	0.542	6.167	0.023	1.642	1.4
Lu		0.045	0.42	0.506	6.950	0.019	1.563	

Compatible example:

- Ni strongly fractionated → olivine > pyroxene
- Cr and Sc → pyroxenes » olivine
- Ni/Cr or Ni/Sc can distinguish the effects of olivine and augite in a partial melt or a suite of rocks produced by fractional crystallization

Table	Table 9-1.Partition Coefficients (C_S/C_L) for Some Commonly Used TraceElements in Basaltic and Andesitic Rocks								
	Olivine	Орх	Срх	Garnet	Plag	Amph	Magnetite		
Rb	0.010	0.022	0.031	0.042	0.071	0.29			
Sr	0.014	0.040	0.060	0.012	1.830	0.46			
Ва	0.010	0.013	0.026	0.023	0.23	0.42			
Ni	14	5	7	0.955	0.01	6.8	29		
Cr	0.70	10	34	1.345	0.01	2.00	7.4		

Models of Magma Evolution Batch Melting

- The melt remains in equilibrium with solid until at some point it is released and moves upward
- Equilibrium melting process with variable % melting

• Batch Melting eq. 9.5 $\frac{C_{L}}{C_{O}} = \frac{1}{\overline{D}_{i}(1-F)+F}$

 C_L = trace element concentration in the liquid

- C_o = trace element concentration in the original rock before melting began
- F = wt fraction of melt produced = melt/(melt + rock)

Batch Melting

A plot of C_L/C_O vs. F for various values of D_i using eq. 9.5

◆ D_i = 1.0

Figure 9.2. Variation in the relative concentration of a trace element in a liquid vs. source rock as a function of D and the fraction melted, using equation (9.5) for equilibrium batch melting. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

D_i » 1.0 (compatible element)

 Very low concentration in melt

Especially for low % melting (low F)

Figure 9.2. Variation in the relative concentration of a trace element in a liquid vs. source rock as a function of D and the fraction melted, using equation (9.5) for equilibrium batch melting. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

Highly incompatible elements

 Greatly concentrated in the initial small fraction of melt produced by partial melting

Subsequently diluted as F increases

Figure 9.2. Variation in the relative concentration of a trace element in a liquid vs. source rock as a function of D and the fraction melted, using equation (9.5) for equilibrium batch melting. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

• As $F \rightarrow 1$ the concentration of every trace element in the liquid = the source rock ($C_L/$ $C_O \rightarrow 1$)

$$\frac{C_{L}}{C_{O}} = \frac{1}{\overline{D}_{i}(1-F) + F} \quad As F \to 1$$
$$C_{L}/C_{O} \to 1$$

Figure 9.2. Variation in the relative concentration of a trace element in a liquid vs. source rock as a fiunction of D and the fraction melted, using equation (9.5) for equilibrium batch melting. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

As $F \rightarrow 0$ $C_L/C_O \rightarrow 1/\overline{D}_i$ $\frac{C_L}{C_O} = \frac{1}{\overline{D}_i(1-F)+F}$

If we know C_{L} of a magma derived by a small degree of batch melting, and we know D_{i} we can estimate the concentration of that element in the source region (C_{O})

Figure 9.2. Variation in the relative concentration of a trace element in a liquid vs. source rock as a fiunction of D and the fraction melted, using equation (9.5) for equilibrium batch melting. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

• For very incompatible elements as $\overline{D}_{i} \rightarrow 0$ 0 $\frac{C_{L}}{C_{O}} = \frac{1}{\overline{D}_{i}(1-F)+F}$ equation 9.5 reduces to: $\frac{C_{L}}{C_{O}} = \frac{1}{F}$

eq. 9.7 If we know the concentration of a very incompatible element in both a magma and the source rock, we can determine the fraction of partial melt produced Other models are used to analyze

- Mixing of magmas
- Wall-rock assimilation
- Zone refining
- Combinations of processes

The Rare Earth Elements (REE) PERIODIC TABLE OF THE ELEMENTS

Contrasts and similarities in the D values: All are incompatible

Olivine

Ony

Table 9-1. Partition Coefficients (C_S/C_L) for Some Commonly Used Trace Elements in Basaltic and Andesitic Rocks

Garnet

Plan

Also Note:

AISO NOLE.		Olivine	Орх	Срх	Garnet	Plag	Amph	Magnetite
	Rb	0.01	0.022	0.031	0.042	0.071	0.29	
HREE are less	Sr	0.014	0.04	0.06	0.012	1.83	0.46	
• • • 1 1	Ва	0.01	0.013	0.026	0.023	0.23	0.42	
incompatible	Ni	14.0	5.0	7.0	0.955	0.01	6.8	29.
	Cr	0.7	10.0	34.0	1.345	0.01	2.0	7.4
Especially in	La 🕡	0.007	0.03	0.056	0.001	0.148	0.544	2.
Lopectary m	Ce	0.006	0.02	0.092	0.007	0.082	0.843	2.
garnet	Nd	0.006	0.03	0.23	0.026	0.055	1.34	2.
8	Sm 🖥	0.007	0.05	0.445	0.102	0.039	1.804	1.
Fu can $\rightarrow 2+$	Eu f	0.007	0.05	0.474	0.243	0.1/1.5*	1.557	1.
	Dy a	0.013	0.15	0.582	3.17	0.023	2.024	1.
which conc.	Er	0.026	0.23	0.583	6.56	0.02	1.74	1.5
• 1 • 1	Yb a	0.049	0.34	0.542	11.5	0.023	1.642	1.4
in <i>plagioclase</i>	Lu 🖵	0.045	0.42	0.506	11.9	0.019	1.563	
						<u> </u>		

Cnx

Data from Rollinson (1993).

 $* Eu^{3+}/Eu^{2+}$ Italics are estimated

REE Diagrams

Plots of concentration as the ordinate (y-axis) against increasing atomic number

 Degree of compatibility increases from left to right across the diagram ("lanthanide contraction")

- Eliminate Oddo-Harkins effect and make y-scale more functional by normalizing to a standard
 - estimates of primordial mantle REE
 - chondrite meteorite concentrations

Divide each element in analysis by the concentration in a chondrite standard

REE diagrams using batch melting model of a garnet lherzolite for various values of F:

Figure 9.4. Rare Earth concentrations (normalized to chondrite) for melts produced at various values of F via melting of a hypothetical garnet Iherzolite using the batch melting model (equation 9.5). From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. Europium anomaly when plagioclase is

a fractionating phenocryst

or

a residual solid in source

Figure 9.5. REE diagram for 10% batch melting of a hypothetical lherzolite with 20% plagioclase, resulting in a pronounced negative Europium anomaly. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

Normalized Multielement (Spider) Diagrams

An extension of the normalized REE technique to a broader spectrum of

elements,

Chondrite-normalized spider diagrams are commonly organized by (the author's estimate) of increasing incompatibility $L \leftarrow R$

Different estimates → different ordering (poor standardization)

Fig. 9.6. Spider diagram for an alkaline basalt from Gough Island, southern Atlantic. After Sun and MacDonough (1989). In A. D. Saunders and M. J. Norry (eds.), Magmatism in the Ocean Basins. Geol. Soc. London Spec. Publ., **42**. pp. 313-345.

MORB-normalized Spider

Separates LIL and HFS

Figure 9.7. Ocean island basalt plotted on a mid-ocean ridge basalt (MORB) normalized spider diagram of the type used by Pearce (1983). Data from Sun and McDonough (1989). From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

Application of Trace Elements to Igneous Systems

- 1. Use like major elements on variation diagrams to document FX, assimilation, etc. in a suite of rocks
 - More sensitive → larger variations as process continues

Figure 9.1a. Ni Harker Diagram for Crater Lake. From data compiled by Rick Conrey. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. 2. Identification of the source rock or a particular mineral involved in either partial melting or fractional crystallization processes

Garnet concentrates the HREE and fractionates among them

Thus if garnet is in equilibrium with the partial melt (a residual phase in the source left behind) expect a steep (-) slope in REE and HREE

Table 9-1. Partition Coefficients (C_S/C_I) for Some Commonly Used Trace Elements in Basaltic and Andesitic Rocks

Shallow (< 40km) partial melting of the mantle will have plagioclase in the resuduum and a Eu anomaly will result

		Olivine	Орх	Срх	Garnet	Plag	Amph	Magnetite
Rb		0.01	0.022	0.031	0.042	0.071	0.29	
Sr		0.014	0.04	0.06	0.012	1.83	0.46	
Ba		0.01	0.013	0.026	0.023	0.23	0.42	
Ni		14.0	5.0	7.0	0.955	0.01	6.8	29.
Cr		0.7	10.0	34.0	1.345	0.01	2.0	7.4
La	S	0.007	0.03	0.056	0.001	0.148	0.544	2.
Ce	ent:	0.006	0.02	0.092	0.007	0.082	0.843	2.
Nd	l Å	0.006	0.03	0.23	0.026	0.055	1.34	2.
Sm	Ше	0.007	0.05	0.445	0.102	0.039	1.804	1.
Eu	루	0.007	0.05	0.474	0.243	0.1/1.5*	1.557	1.
Dy	Ear	0.013	0.15	0.582	3.17	0.025	2.024	1.
Er	e e	0.026	0.23	0.583	6.56	0.02	1.74	1.5
Yb	Rai	0.049	0.34	0.542	11.5	0.023	1.642	1.4
Lu		0.045	0.42	0.506	11.9	0.019	1.563	
Data	from	1 Rollinson (1	993)			$E_{u^{3+}/E_{u^{2+}}}$	talics are e	stimated

Data from Rollinson (1993).

Garnet and Plagioclase effect on HREE

Table 9.6 A Brief Summary of Some Particularly Useful Trace Elements in Igneous Petrology

Element	Use as a Petrogenetic Indicator
Ni, Co, Cr	Highly compatible elements. Ni and Co are concentrated in olivine, and Cr in spinel and clinopyroxene. High concentrations
	indicate a mantle source, limited fractionation, or crystal accumulation.
Zr, Hf	Very incompatible elements that do not substitute into major silicate phases (although they may replace Ti in titanite or
	rutile). High concentrations imply an enriched source or extensive liquid evolution.
Nb, Ta	High field-strength elements that partition into Ti-rich phases (titanite, Ti-amphibole, Fe-Ti oxides. Typically low
	concentrations in subduction-related melts.
Ru, Rh, Pd,	Platinum group elements (PGEs) are siderophile and used mostly to study melting and crystallization in mafic-ultramafic
Re, Os, Ir,	systems in which PGEs are typically hosted by sulfides. The Re/Os isotopic system is controlled by initial PGE
Pd	differentiation and is applied to mantle evolution and mafic melt processes.
Sc	Concentrates in pyroxenes and may be used as an indicator of pyroxene fractionation.
Sr	Substitutes for Ca in plagioclase (but not in pyroxene), and, to a lesser extent, for K in K-feldspar. Behaves as a compatible
	element at low pressure where plagioclase forms early, but as an incompatible element at higher pressure where
	plagioclase is no longer stable.
REE	Myriad uses in modeling source characteristics and liquid evolution. Garnet accommodates the HREE more than the LREE,
	and orthopyroxene and hornblende do so to a lesser degree. Titanite and plagioclase accommodates more LREE. Eu ²⁺ is
	strongly partitioned into plagioclase.
Y	Commonly incompatible. Strongly partitioned into garnet and amphibole. Titanite and apatite also concentrate Y, so the

presence of these as accessories could have a significant effect.

Trace elements as a tool to determine paleotectonic environment

- Useful for rocks in mobile belts that are no longer recognizably in their original setting
- Can trace elements be discriminators of igneous environment?
- Approach is empirical on modern occurrences
- Concentrate on elements that are immobile during low/medium grade metamorphism

Figure 9.8 Examples of discrimination diagrams used to infer tectonic setting of ancient (meta)volcanics. **(a)** after Pearce and Cann (1973), **(b)** after Pearce (1982), Coish et al. (1986). Reprinted by permission of the American Journal of Science, **(c)** after Mullen (1983) Copyright © with permission from Elsevier Science, **(d)** and **(e)** after Vermeesch (2005) © AGU with permission.