Homework 5: Due Monday 11/19/2012 in class

Required Reading:

You should have completed Chapter 5.

Grad students: Please also read Dietrich & Perron's paper, "The search for a topographic signature of life" and answer the following:

Based on this paper, does life leave a unique imprint on a planet's surface morphology? If life were rare, but present now or previously in some regions of a planet (e.g., Mars), could we distinguish these regions from those that have always been sterile? What types of observations might be most informative?

Questions:

Please answer the following questions from your textbook:

Chapter 5: 5.5, 5.6, 5.9

Also, answer the following (adapted from Planetary Surface Processes by H. J. Melosh):

1) Swedish cratering rate

In addition to the 5 proven and 33 possible impact craters in the country of Sweden, Lilljequist & Henkel (1996) proposed the existence of a truly world-class crater, the Uppland structure, 320 km in diameter.

- **a.)** Using Earth's estimated cratering rate of N_{cum} (D > 22.6 km) = 1.8 x 10⁻¹⁵ craters/km²/yr, and a power law exponent b = 1.8 (see your class notes), compute the size of the largest crater likely to have formed in Sweden (area $\approx 450,000 \text{ km}^2$) since the formation of its surface rocks $\sim 2000 \text{ Myr}$ ago. How does this compare to the size of the putative Uppland structure?
- **b.)** Calculate the probability that a crater as large as Uppland would have formed in the past 2000 Myr. Note that the largest *confirmed* crater in Sweden is the 55 km-diameter Siljan structure.

2) Winds in the outer solar system

Triton, Neptune's largest moon, has a *very* thin atmosphere (\sim 15 µbar!) composed mainly of N₂ gas at a chilly 38 K. Suppose that loose "sand" grains of water ice (perhaps from impact ejecta) lie on Triton's surface.

- **a.)** What grain size would be most easily entrained in saltation?
- **b.)** How fast must the winds of Triton blow to entrain such grains? Compute both the threshold wind friction speed and the speed 1 meter above the surface, assuming a logarithmic wind profile with aerodynamic roughness z_0 equal to $1/30^{th}$ of the grain size.
- **c.)** Using equation 7.3 in your textbook, compare this to the speed of sound in Triton's atmosphere (note that $\gamma \approx 1.4$ for a diatomic gas such as N_2).
- **d.)** What can you conclude about the likelihood of finding sand dunes on Triton? Do you expect New Horizons to find sand dunes on Pluto?