
Planetary Atmospheres

Structure

Composition
Clouds
Photochemistry
Meteorology
Atmospheric Escape

Generalized Hydrostatic Equilibrium

$$P(z) = P(0)e^{-\int_{0}^{z} dr/H(r)} \qquad \rho(z) = \rho(0)e^{-\int_{0}^{z} dr/H^{*}(r)}$$

Generalized Pressure Scale Height

$$H(z) = \frac{kT(z)}{g_p(z)\mu_a(z)m_{amu}}$$

Generalized Density Scale Height

$$\frac{1}{H^*(z)} = \frac{1}{T(z)} \frac{dT(z)}{dz} + \frac{g_p(z)\mu_a(z)m_{amu}}{kT(z)}$$

Note: For an Isothermal Atmosphere (or region of an atmosphere):

$$H(z) = H^*(z)$$

Since
$$\frac{dT(z)}{dz} = 0$$

Remember that
$$g_p(z) = \frac{GM_p}{r^2} = \frac{GM_p}{\left(R_p + z\right)^2}$$

* So at small altitudes $r \Rightarrow R_P$ and $g_p(z) \cong g_p(R_p)$

Most planets have near-surface scale heights ranging between ~10-25 km due to the similar ratios of $T/(g_p\mu_a)$

	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
$T_{surf}(K)$	737	288	215	165*	135*	76*	72*
Bond Albedo	0.75	0.31	0.25	0.34	0.34	0.29	0.31
H (km)	16	8.5	11	24	47	25	23

^{*} Temperature at 1 bar pressure

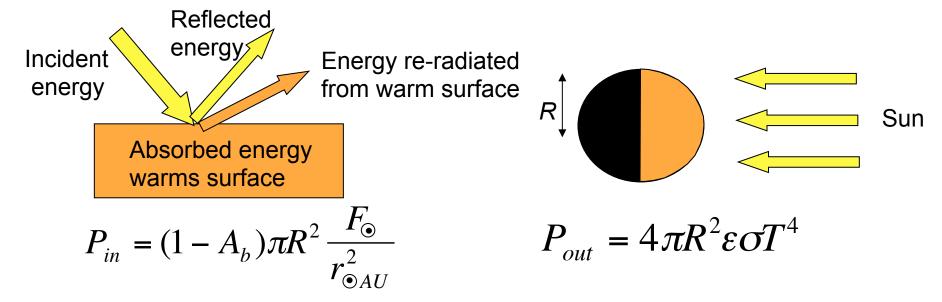
Of course, temperature actually does vary with height If a packet of gas rises rapidly (adiabatic), then it will expand and, as a result, cool

Work done in expanding = work done in cooling

$$VdP = \frac{m_{gm}}{\rho}dP \qquad C_p dT$$

 m_{gm} is the mass of one mole, ρ is the density of the gas

 C_p is the specific heat capacity of the gas at constant pressure


Combining these two equations with hydrostatic equilibrium, we get the dry adiabatic lapse rate:

$$\frac{dT}{dz} = \frac{m_{gm}g_p}{C_p} = \frac{g_p}{c_p}$$

* On Earth, the lapse rate is about 10 K/km

Thermal Structure: Surface

What determines a planet's surface temperature?

 A_b is Bond albedo, F_{\odot} is solar flux at Earth's distance, r_{\odot} is distance of planet to Sun, ε is emissivity, σ is Stefan's constant (5.67x10⁻⁸ Wm⁻²K⁻⁴)

Balancing energy in and energy out yields:

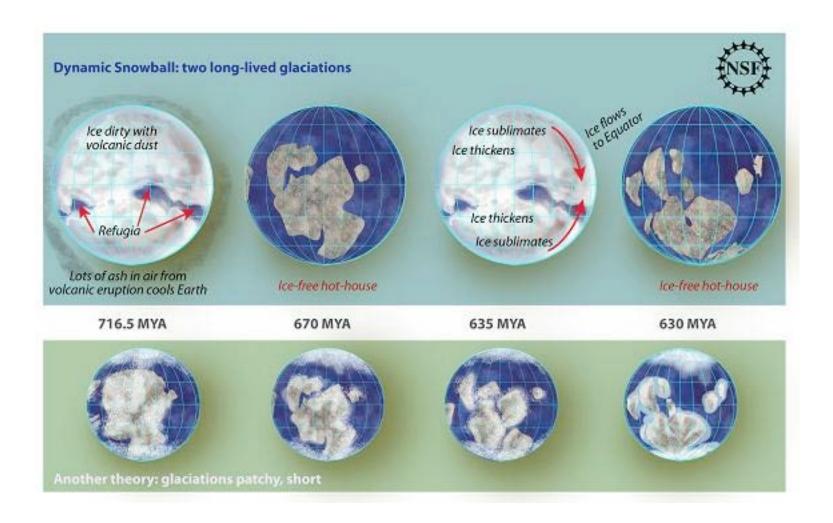
$$T_{eq} = \left(\frac{F_{\odot}}{r_{\odot AU}^2} \frac{(1 - A_b)}{4\varepsilon\sigma}\right)^{1/4}$$

Thermal Structure: Surface

- Solar constant F_☉ = 1300 Wm⁻²
- Earth (Bond) albedo A_b =0.3, ε =0.9
- Equilibrium temperature = 263 K
- How reasonable is this value?

Body	Mercury	Venus	Earth	Mars
A_b	0.12	0.75	0.3	0.25
T_{eq}	446	238	263	216
Actual T	100-725	737	288	215

- How to explain the discrepancies?
- Has the Sun's energy stayed constant with time?

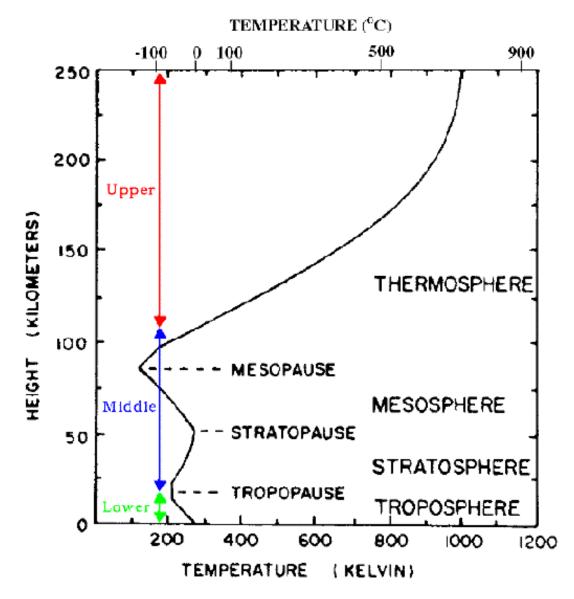

Thermal Structure: Greenhouse Effect

- Atmosphere is more or less transparent to radiation (photons) depending on wavelength – opacity
- Opacity is low at visible wavelengths, high at infrared wavelengths due to absorbers like water vapor, CO₂
- Incoming light (visible) passes through atmosphere with little absorption
- Outgoing light is infrared (since the surface temperature is lower) and is absorbed by atmosphere
- So atmosphere heats up
- Venus suffered from a runaway greenhouse effect surface temperature got so high that water was unstable, so no CO₂ could dissolve and form carbonates as on Earth

Thermal Structure: Albedo Effects

- Fraction of energy reflected (not absorbed) by surface is given by the albedo A (0<A<1)
- Coal dust has a low albedo, ice a high one
- The albedo can have an important effect on surface temperature
- E.g. ice caps grow, albedo increases, more heat is reflected, surface temperature drops, ice caps grow further . . . runaway effect!
- This mechanism is thought to have led to the Proterozoic Snowball Earth
- How might clouds affect planetary albedo?

Recurring Snowball Earth?

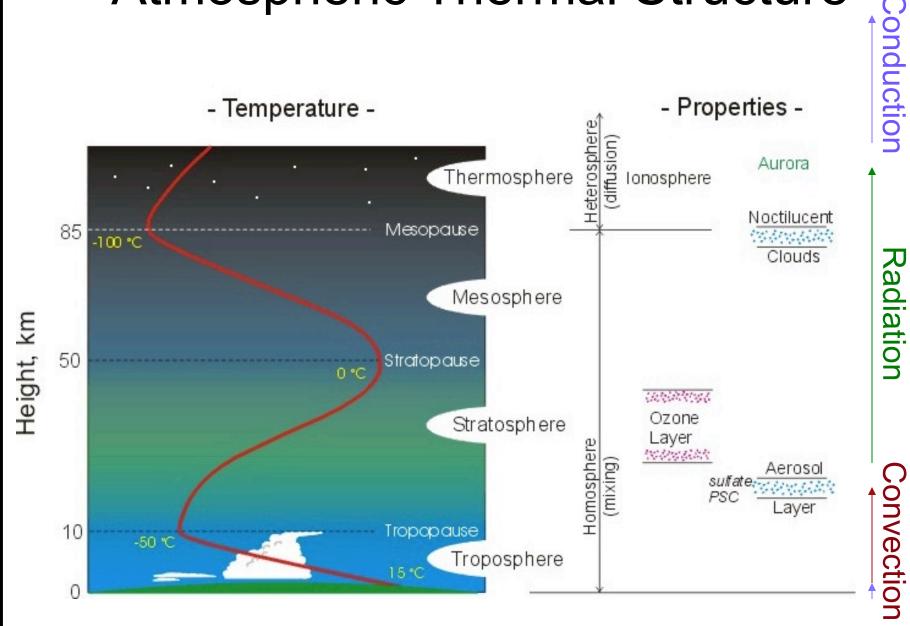


The atmospheric temperature profile is governed by the efficiency of energy transport, which largely depends on optical depth, $\tau_{\rm v}$. Remember that heating by solar radiation is a 'top-down' process.

Optical depth (or transparency) is determined by physical and chemical processes in the atmosphere and can change in time and in altitude.

Other factors to consider:

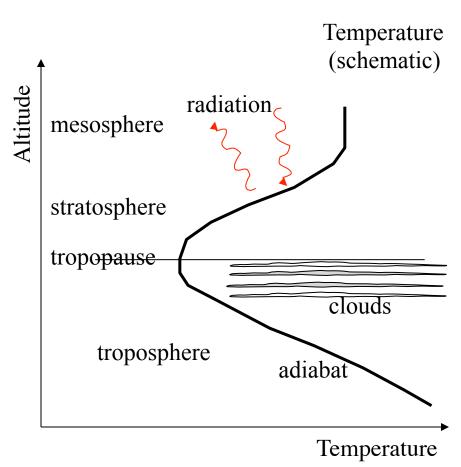
- Clouds can change the albedo, the optical depth, and the local temperature (via release/ absorption of latent heat).
- Surface variations/composition can affect albedo and surface temperatures depend on the thermal properties of materials and their chemical interactions with the atmosphere
- Geologic processes such as volcanism can greatly impact the composition, as well as chemistry and albedo (via dust grains and aerosols) of the atmosphere.


Troposphere: Where condensable gases form clouds. dT/dz < 0

Stratosphere: dT/dz > 0

Mesosphere: dT/dz < 0

Thermosphere: dT/dz > 0


Exosphere: Roughly Isothermal

Lower atmosphere
(opaque) is dominantly
heated from below and
will be conductive or
convective (adiabatic)

Upper atmosphere intercepts solar radiation and re-radiates it

There will be a temperature minimum where radiative cooling is most efficient (the tropopause)

