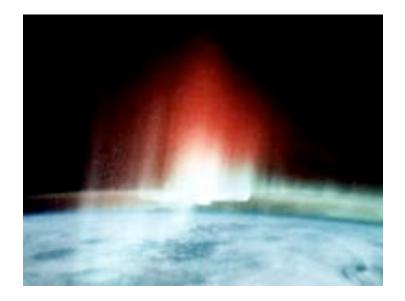
Planetary Atmospheres

Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape



Generalized Hydrostatic Equilibrium $P(z) = P(0)e^{-\int_{0}^{z} dr/H(r)} \qquad \rho(z) = \rho(0)e^{-\int_{0}^{z} dr/H^{*}(r)}$

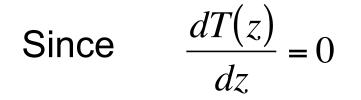
Generalized Pressure Scale Height

$$H(z) = \frac{kT(z)}{g_p(z)\mu_a(z)m_{amu}}$$

Generalized Density Scale Height $\frac{1}{H^{*}(z)} = \frac{1}{T(z)} \frac{dT(z)}{dz} + \frac{g_{p}(z)\mu_{a}(z)m_{amu}}{kT(z)}$

Note: For an Isothermal Atmosphere (or region of an atmosphere):

$$H(z) = H^*(z)$$



Remember that
$$g_p(z) = \frac{GM_p}{r^2} = \frac{GM_p}{\left(R_p + z\right)^2}$$

* So at small altitudes $r \Rightarrow R_p$ and $g_p(z) \cong g_p(R_p)$

Most planets have near-surface scale heights ranging between ~10-25 km due to the similar ratios of

 $T/(g_p \mu_a)$

	Venus Earth Mars Jupiter Saturn Uranus Nept						
	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
T _{surf} (К)	737	288	215	165*	135*	76*	72*
Bond Albedo	0.75	0.31	0.25	0.34	0.34	0.29	0.31
<i>H</i> (km)	16	8.5	11	24	47	25	23

* Temperature at 1 bar pressure

Of course, temperature actually does vary with height If a packet of gas rises rapidly (adiabatic), then it will expand and, as a result, cool

Work done in expanding = work done in cooling

$$VdP = \frac{m_{gm}}{\rho}dP$$

 m_{gm} is the mass of one mole, ρ is the density of the gas

 $C_p dT$

 C_p is the specific heat capacity of the gas at constant pressure

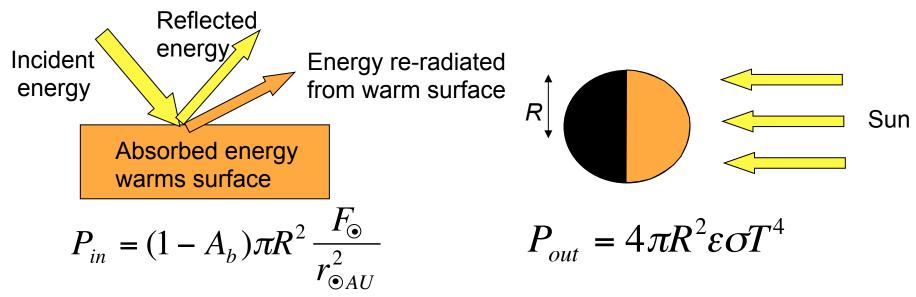
Combining these two equations with hydrostatic equilibrium, we get the dry adiabatic lapse rate:

$$\frac{dT}{dz} = \frac{m_{gm}g_p}{C_p} = \frac{g_p}{c_p}$$

* On Earth, the lapse rate is about 10 K/km

Thermal Structure: Surface

What determines a planet's surface temperature?



 A_b is Bond albedo, F_{\odot} is solar flux at Earth's distance, r_{\odot} is distance of planet to Sun, ε is emissivity, σ is Stefan's constant (5.67x10⁻⁸ Wm⁻²K⁻⁴)

Balancing energy in and energy out yields:

$$T_{eq} = \left(\frac{F_{\odot}}{r_{\odot AU}^2} \frac{(1-A_b)}{4\varepsilon\sigma}\right)^{1/2}$$

4

Thermal Structure: Surface

- Solar constant F_{\odot} =1300 Wm⁻²
- Earth (Bond) albedo $A_b=0.3$, $\varepsilon=0.9$
- Equilibrium temperature = 263 K
- How reasonable is this value?

Body	Mercury	Venus	Earth	Mars
A_b	0.12	0.75	0.3	0.25
T_{eq}	446	238	263	216
Actual T	100-725	737	288	215

- How to explain the discrepancies?
- Has the Sun's energy stayed constant with time?