Planetary Surface Processes

Cratering Gravity **Tectonics** Volcanism Winds Fluvial Glacial Chemical weathering

Simple craters

Contact and compression stage

 Most of projectile's energy, momentum transferred to target rocks

- $t_{cc} \approx 2R/v_i$
- Rankine-Hugoniot equations can be solved for pressure

 At few km/s, energy per unit mass ≈ that of TNT

Ejection/excavation stage

 Rarefraction wave vaporizes/melts/ fractures rocks

• $t_{cf} \approx (D/g_p)^{1/2}$

~10 s for Meteor crater

~13 min for Mare Imbrium

Collapse/modification stage

- Steep rim of transient crater collapses into interior
- $t \approx \text{few x } (D/g_p)^{1/2}$
- Final depth $d \approx 0.2D$
- Rim height $h \approx 0.04D$

FOLD

• Diameter $D \approx 20R$

PRE-IMPACT HORIZONTAL SURFACE

Kring (2007,

Po

Victoria Crater as viewed by Opportunity

Bedrock

Pre-Impact Surface

Squyres et al. (2009)

Complex craters

Simple vs. complex craters

Worthington (1908)

Simple vs. complex craters

Kring (2006)

Central uplifts should be shorter than crater rims...

*h*_{cp} ≈ 0.1*d* (Mars) [*Garvin et al., 2003*]

Vesta

July 24, 2011

For $D \sim R_p$, normal rules do not apply...

Multi-ring basins

Multi-ring basins

Multi-ring basins

Crater ejecta

- Continuous and discontinuous ejecta
- Secondary crater chains

Ejecta rays

Marquette Island, Meridiani Planum

Layered / "fluidized" ejecta

Barlow (2010)

Atmospheric effects

- Can slow down / break up meteoroids, producing crater clusters
- Significant when displaced mass $\sigma_{\rho}A/\sin\theta \approx$ meteoroid's mass
 - Likelihood of breakup ~ $\sigma_{\rho}/R\rho \sin\theta$
- No craters smaller than ~3 km on Venus! (Few < 30 km)

Central pit craters

Form on Mars, icy moons via:

- 1) target volatile vaporization?
- 2) collapse of weak icy crust?
- 3) excavation into liquid?

Other oddities

Very oblique impact? (<5°)

Binary asteroid?

Subsurface structure?

