Planetary Atmospheres

Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape

Cloud formation

Saturated Vapor Pressure: Maximum amount of water vapor partial pressure

Cloud formation

Wet Adiabatic Lapse Rate:

 $P = C_I e^{-L_S / (R_{gas}T)}$ $c_v dT = -PdV - L_s dw_s$ $c_P dT = \frac{1}{dP} - L_S dw_S$ dT g_P $dz = \frac{-}{c_P} + L_S dw_S / dT$

Saturation Vapor Pressure

L_s is *Specific* Latent Heat

 $w_{\rm s}$ is the mass of water vapor that condenses out per gram of air

= 5–6 K/km on Earth

Martian clouds

Planetary Atmospheres

Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape

Photochemistry

We can characterize chemical reactions in the atmosphere in the following way:

- 1. Photolysis: Molecular breakup directly driven by solar radiation (also referred to as *photodissociation*)
- 2. Photoionization: Reactions that result in the ionization of atoms and molecules
- **3.** Recombination: Direct/indirect reversing of the photolysis and photoionization reactions
- 4. Dissociative Recombination: Reversing the process of photoionization via breaking a chemical bond
- 5. Charge Exchange: Direct electron exchange between a close passing ion and neutral
- 6. Atom-Ion Interchange: Interaction between an ion and atom that results in compositional alteration of the ion.

Photolysis

Oxygen in the Earth atmosphere processed by photons:

(1)
$$O_2 + hv \rightarrow O + O$$
 for $\lambda < 175$ nm
 $\frac{d[O]}{dt} = 2[O_2]J_1(z)$ Production rate of O

Where $J_i(z)$ is the reaction rate for a reaction 'i' as a function of altitude, and [atom or molecule] indicates the number per unit volume

$$J_i(z) = \int \sigma_{x_v} \mathcal{F}_v e^{-\tau_v(z)/\mu_\theta} dv$$

Since the number of photons decreases exponentially with depth penetrated into the atmosphere, production of O increases with altitude even though $[O_2]$ increases as you approach the surface.

Recombination

Direct two body recombination reverses photolysis:

$$O + O \rightarrow O_2 + hv \tag{2}$$

However, this reaction is slow, so three body processes dominate instead:

$$O + O + M \rightarrow O_2 + M$$
 (3)

$$O_2 + O + M \rightarrow O_3 + M \tag{4}$$

Where the reaction rates can be written:

$$\frac{d[O_2]}{dt} = ?$$
$$\frac{d[O_2]}{dt} = [O]^2 [M] k_{r3}$$

 k_{ri} is the reaction rate dependent on the collision rate (thus T) of the molecules

Photoionization

Oxygen and Nitrogen in the Earth atmosphere ionized by photons:

$$O_2 + h\nu \rightarrow O_2^+ + e^-$$
$$N_2 + h\nu \rightarrow N_2^+ + e^-$$
$$O + h\nu \rightarrow O^+ + e^-$$

However, these products are efficiently processed via charge exchange and atom-ion interchange to yield mostly NO⁺ and O_2^+

$$N_{2}^{+} + O_{2} \rightarrow N_{2} + O_{2}^{+}$$
$$O^{+} + O_{2} \rightarrow O_{2}^{+} + O$$
$$N_{2}^{+} + O \rightarrow NO^{+} + N$$

Ion Loss: Recombination

Dissociative Recombination:

$$O_2^+ + e^- \rightarrow O + O$$

 $NO^+ + e^- \rightarrow N + O$

Radiative Recombination is much less efficient:

$$O^+ + e^- \rightarrow O + hv$$

Hence rapid processes like charge exchange and atom-ion interchange quickly replace the produced ions with dominant ions that can undergo dissociative recombination

Methane on Mars

Destroyed by photochemistry
 → 300–600 yr lifetime

...not fast enough??

• Bar-Nun & Dimitrov (2006) argued that methane could also be produced photochemically

→ controversial