Frame Transfer or Interline CCDs
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Fig. 2.5. Cartoon view of (top) a frame transfer CCD and (bottom) an interline

Output register

cCD. From Eccles. Sim, & Tritton (1983).
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Output amplifier

Can take new image during readout,
but “waste” half the array on
shielded (inactive) pixels



Antiblooming CCDs

Devote ~30% of each pixel area to
“drain gate” for excess electrons
rather than imaging

(@) (0)

Fig. 2.6. Two equal-length CCD exposures of a bright star (SAO 110456). The
normal CCD exposure (a) shows typical bleeding caused by saturation within
the CCD. The CCD exposure on the right (b) was made with an antiblooming
&CD and clearly shows the much reduced bleeding from the bright star. From
Neely & Janesick (1993).



Related (non-CCD) devices

Complementary Metal Oxide Semiconductor (CMOS) detector arrays
incorporate extra circuitry into each pixel

* Each pixel produces its own DN!

* Can do additional signal processing on the chip

* Reduced QE (~20%)

* Increasingly popular commercially (e.g., iPhone camera)

Superconducting Tunnel Junction (STJ) devices generate multiple
electrons from each incident photon

* f#is proportional to photon energy =2 instant spectra!

* CCDs do this with X-ray photons; STJs can do it with UV visible/IR



Spectroscopy: The Study of Squiggly Lines
.

o - o

Reflectance spectroscopy: light absorbed at specific wavelengths corresponding to energy
level transitions



Interaction of Radiant Energy and Matter

What causes absorption features in visible & infrared spectra?

1) Rotational absorption (gases)
2) Electronic absorption

3) Vibrational absorption



Rotational Processes

Photons striking free molecules can cause them to rotate. The
rotational states are quantized, so there are discrete photon
energies that, when absorbed, cause the molecules to spin.

Rotational interactions are low-energy interactions and the
absorption features are at long infrared wavelengths.

Not important in remote sensing of solid materials



Electronic Processes

Isolated atoms and ions have discrete energy states. Absorption of
photons of a specific wavelength causes a change from one
energy state to a higher one.
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Electronic Processes

Crystal Field Effects

The electronic energy levels of an isolated ion are usually split and
displaced when located in a solid. Unfilled d orbitals are split
by interaction with surrounding ions and assume new energy
values. These new energy values (transitions between them
and consequently their spectra) are primarily determined by
the valence state of the ion (Fe?*, Fe3*), coordination number,
and site symmetry.
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Energy Level Splitting in Solids: Part 1

Higher .“‘;\ =
Energy ., o
Levels

dx2- v2 &

In a free atom these have equal energy, but not in a crystal...



Energy Level Splitting in Solids: Part 2

- diagnostic of mineralogy



Unfilled d orbitals: the transition metals

Periodic Table of the Elements
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Iron is the most geologically abundant transition metal



Electronic Processes

Crystal Field Effects

The electronic energy levels of an isolated ion are usually split and
displaced when located in a solid. Unfilled d orbitals are split
by interaction with surrounding ions and assume new energy
values. These new energy values (transitions between them
and consequently their spectra) are primarily determined by
the valence state of the ion (Fe?*, Fe3*), coordination number,
and site symmetry.
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Fe electronic transitions in olivine, pyroxene
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Spectra can indicate pyroxene composition
Di (M+Ca) Hd (Fe+Ca)
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(mostly) Non-Fe-bearing silicate minerals
(igneous rock)
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Electronic Processes

Charge-Transfer Absorptions

Absorption bands can also be caused by charge transfers, or inter-
element transitions where the absorption of a photon causes
an electron to move between ions. The transition can also
occur between the same metal in different valence states, such
as between Fe2+ and Fe3+. Absorptions are typically strong.
A common example is Fe-O band in the uv, causing iron
oxides to be red.

http://en.wikipedia.org/wiki/Image:Hematite.jpg http://www.galleries.com/minerals/silicate/olivine/olivine.jpg



Electron charge transfer: why Mars is red!
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Electronic Processes

Conduction Bands

In metals and some minerals, there are two energy levels in which
electrons may reside: a higher level called the "conduction
band," where electrons move freely throughout the lattice,
and a lower energy region called the "valence band," where
electrons are attached to individual atoms. The yellow color
of gold and sulfur is caused by conduction-band absorption.
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Conduction band processes
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Electronic Processes

Color Centers

Crystal defects (e.g., induced by
radiation) can lead to absorption
by materials whose chemical
formula otherwise would not
suggest any visible/near-infrared 5
features. ;

At right, NaCl irradiated under
Europa-like conditions
(Hand & Carlson, 2015)



Molecular vibrations

Symmetric Asymmetric _
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Vibrational Processes

The bonds in a molecule or crystal lattice are like springs with
attached weights: the whole system can vibrate. The
frequency of vibration depends on the strength of each spring
(the bond in a molecule) and their masses (the mass of each
element in a molecule). For a molecule with N atoms, there
are 3N-6 normal modes of vibrations called fundamentals.*
Each vibration can also occur at multiples of the original
fundamental frequency (overtones) or involve different modes
of vibrations (combinations).

* In general, a molecule with N atoms has 3N-6 normal modes
of vibration but linear molecules have only 3N-5 normal

modes of vibration as rotation about its molecular axis
cannot be observed.
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Water vibrations: ice VS. hydrated minerals
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Reflectance (offset)

Hydrated salt spectra
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Essentially all features due to H,0/OH vibrations



CRISM ratloed I/F

Hydrated salts on Mars: e.g., bassanite
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Spectroscopy-guided roving
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