Spectra of common Earth-surface materials

Plant Pigments

Wavelength of light (nm)

 $C_{40}H_{56}$

Variations from one species to another

Wavelength (nanometers)

Reflectance

Reflectance

Reflectance

Normalized Difference Vegetation Index $NDVI = \frac{(NIR - VIS)}{(NIR + VIS)}$

average NDVI of June 2003

Normalized Difference Vegetation Index $NDVI = \frac{(NIR - VIS)}{(NIR + VIS)}$

average NDVI of October 2003

Thicker canopy = more reflective (at wavelengths where absorption is minimal)

Thicker canopy = more reflective (at wavelengths where absorption is minimal)

Leaf Area Index (LAI): the one-sided green leaf area per unit ground surface area

Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Phase affects spectra

Particle size affects spectra

Low surface/volume ratio

High surface/volume ratio

Average optical path is long

Path is shorter

Particle size affects spectra

Pyroxene

XY(Si,Al)₂O₆

...and not always in a simple way

Intimate mixing can be highly non-linear

Adding highly absorptive charcoal greatly reduces the optical path length ("z" in Beer's Law: e^{-kz})

A small amount has a large effect

Larger amounts have diminishing effect

Space weathering

Nanophase iron reddens, darkens, weakens absorption bands

Spectral resolution:

multispectral remote sensing vs. imaging spectroscopy

Imaging spectroscopy is more likely to resolve absorption bands

The challenge of multispectral data

