Dispersion Elements: Transmission Filters

Dispersion Elements: Dichroic Mirrors

Dispersion Elements: Prisms and Diffraction Gratings

Real Spectrometers Might Use All 3!

Imaging Spectrometers

What if you can only sense/display a few bands?

Let's start with how humans sense color:

Cone-shaped cells within the eye absorb light in 3 wavelength ranges – **RGB**

They send signals to the brain proportional to how much light is absorbed

The brain turns these signals into the sensation of color

Color has three attributes – <u>hue</u>, <u>saturation</u>, and <u>intensity</u> or lightness

Section of the eye

color (perception) is related to radiance (physical flux)

Rods are more sensitive than cones

In **bright light**, the three sets of cones send strong signals to the brain that drown out the signal from the rods. The signals are interpreted as the sensation of **color**

In **dim light**, the signal from the single set of rods is dominant. It is interpreted as the sensation of black/white (**gray**)

Additive Color

Additive Color

We can describe color in different data "spaces", e.g.:

*Perceptual data space

- how we sense color intuitively (Hue, saturation, intensity)

*<u>Radiance</u> data space

- how the color stimulus is described by the measured image data

INTENSITY (LIGHTNESS)

2) **RGB** radiance space

1) Use filters sequentially via spacecraft motion or filter wheel

e.g. Mastcam Camera Filters

Hyperspectral vs. Multispectral

Bayer pattern user: Curiosity's Mars Hand Lens Imager (MAHLI)

Curiosity's Mastcam: Bayer pattern and filter wheel

Landsat Thematic Mapper Bands

ASTER on board Terra: closely spaced SWIR filters to discriminate OH-bearing minerals

Band	Label	Wavelength (µm)	Resolution (m)	Nadir or Backward	Description
B1	VNIR_Band1	0.520-0.600	15	Nadir	Visible green/yellow
B2	VNIR_Band2	0.630-0.690	15	Nadir	Visible red
B3	VNIR_Band3N	0.760-0.860	15	Nadir	Near infrared
B4	VNIR_Band3B	0.760-0.860	15	Backward	
B5	SWIR_Band4	1.600-1.700	30	Nadir	Short-wave infrared
B6	SWIR_Band5	2.145-2.185	30	Nadir	
B7	SWIR_Band6	2.185-2.225	30	Nadir	
B8	SWIR_Band7	2.235-2.285	30	Nadir	
B9	SWIR_Band8	2.295-2.365	30	Nadir	
B10	SWIR_Band9	2.360-2.430	30	Nadir	
B11	TIR_Band10	8.125-8.475	90	Nadir	Long-wave infrared or thermal IR
B12	TIR_Band11	8.475-8.825	90	Nadir	
B13	TIR_Band12	8.925-9.275	90	Nadir	
B14	TIR_Band13	10.250-10.950	90	Nadir	
B15	TIR_Band14	10.950-11.650	90	Nadir	

Diffraction gratings

e.g., CDs and DVDs

(Also AVIRIS, PSR-3500, most planetary reflectance spectrometers)

Diffraction gratings

Constructive interference where: $\sin \theta = m^* \lambda / d$

(If $d > \lambda$)

Figure 6.8. Dispersion of broad-band radiation by a diffraction grating. The values of n are the orders of the spectra.

Grating, plus "order-sorting filters" on detector

VNIR (Si)

Relative Transmission

900

1400

1900

2400

Wavelength, nm

2900

3400

3900