“Continuous” vs. “Discrete” Spectral Mapping
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Figure 1. An explanation of some of the most common
spectral parameters using an idealized spectrum. The solid
line is an idealized spectrum with an absorption band
superimposed on a sloped continuum. In the above
example, the reflectance at the wavelength indicated by
the point labeled 1 (i.e., at A,) is represented as R;. Spectral
slope is found by (R; — R>)/(A; — Az). Band depth is found
by 1 — Rc/Re+, where the point labeled C indicates the
center of the absorption at A, R is the reflectance at that
wavelength, and Ri« i1s derived from the continuum fit
along the dashed line and is equal to (a*Rg + b*R;), where
a=1-band b= (A(‘ - Ag)/()\L - )\g)

Can go beyond simple band
ratios to band depths...

Pelkey et al. (2007)



Table 1. CRISM Spectral Parameter Summary Products®

Name Parameter Formulation” Rationale o O r even more C O mpleX

Surface Parameters ©

R770 0.77 pm reflectance R770 rock/dust
RBR red/blue ratio R770/R440 rock/dust
BD530 0.53 pm band depth 1 — (R530/(a*R648 + b*R440)) crystalline ferric minerals band math
SH600 0.60 ym shoulder height R600/(a*R530 + b*R680) select ferric minerals
BD640 0.64 ym band depth 1 — (R648/(a*R600 + b*R680)) select ferric minerals
BD860 0.86 um band depth 1 — (R860/(a*R800 + b*R920)) select ferric minerals
RPEAK1 reflectance peak 1 wavelength where 1st derivative = 0 Fe mineralogy
of 5th order polynomial fit to R600,
R648, R680, R710, R740, R770, R800, R830
BDI1000VIS 1 pum integrated band depth; divide R830, R860, R890, R920 Fe mineralogy
VIS wavelengths by RPEAK1 then integrate over
(1 — normalized reflectances)
BDI1000IR 1 pm integrated band depth; divide R950, R980, R1020, R1050, R1080, R1150 Fe mineralogy
IR wavelengths by linear fit from peak R between 1.3—1.87 ym

to R2530 extrapolated backward to remove
continuum, then integrate over
(1 — continuum-corrected reflectances)

IRA 1.3 pm reflectance R1330 IR albedo

OLINDEX Olivine index (R1695/(0.1*R1050 + 0.1*R1210 olivine will be strongly positive;
+ 0.4*R1330 + 0.4*R1470)) — 1 based on fayalite

LCPINDEX  pyroxene index ((R1330-R1050)/(R1330 + R1050)) pyroxene will be strongly positive;
* (R1330-R1815)/(R1330 + R1815) favors LCP

HCPXINDEX pyroxene index ((R1470-R1050)/(R1470 + R1050)) pyroxene will be strongly positive;
* ((R1470-R2067)/(R1470 + R2067) favors HCP

VAR spectral variance variance of observed data from a line fit from 1.0-2.3 ym olivine and pyroxene will have

high values

ISLOPE1 —~1 * spectral slopel (R1815-R2530)/(2530-1815) ferric coating on dark rock

BDI1435 1.435 ym band depth 1 — (R1430/(a*R1370 + b*R1470)) CO, ice

BD1500 1.5 pm band depth 1 — (R1510/(a*R1330 + b*R1695)) H,0 ice

ICERI 1.5 pm and 1.43 pm band ratio R1510/R1430 CO,, H,0 ice mixtures

BDI1750 1.75 pm band depth 1 — (R1750/(a*R1660 + b*R1815)) gypsum

BD1900 1.9 ym band depth I — (((R1930 + R1985)*0.5)/(a*R1857 + b*R2067)) HO

BDI2000 2 pm integrated band depth divide R1660, R1815, R2140, R2210, Fe mineralogy

R2250, R2290, R2330, R2350, R2390,
R2430, R2460 by linear fit from peak R
between 1.3—1.87 ym to R2530,

to remove continuum, then integrate

over (1 — continuum-corrected reflectances)

BD2100 2.1 pym band depth 1 — (((R2120 + R2140)*0.5)/(a*R1930 + b*R2250)) Monohydrated minerals
BD2210 2.21 pm band depth 1 — (R2210/(a*R2140 + b*R2250)) Al-OH minerals
BD2290 2.29 ym band depth 1 — (R2290/(a*R2250 + b*R2350)) Mg Fe-OH minerals (@ 2.3);
ALSO CO; ice (@ 2.292)
D2300 2.3 pm drop 1 — ((CR2290 + CR2320 + CR2330)/ hydrated min; particularly phyllosilicates
(CR2140 + CR2170 + CR2210))
(CR values are observed R values divided
by values fit along the slope as determined
between 1.8-2.53 um
(essentially continuum corrected))
D2400 2.4 ym drop 1 — ((CR2390 + CR2430)/ (CR2290 + CR2320)) hydrated min; particularly sulfates
(CR values are observed R values
divided by values fit along the slope
as determined between 1.8-2.53 ym
(essentially continuum corrected))
ICER2 gauge 2.7 ym band R2530/R2600 CO; ice will be > 1; H,0 ice
and soil will be ~1
BDCARB 2.33 & 2.53 pm band depth 1 — (sqrt [(R2330/(a*R2230 + b*R2390)) carbonate overtones
*(R2530/(c*R2390 + d*R2600))])
BD3000 3 pm band depth 1 — (R3000/(R2530%(R2530/R2210))) H,0
BD3100 3.1 ym band depth 1 — (R3120/(a*R3000 + b*R3250)) H,O0 ice
BD3200 3.2 ym band depth 1 — (R3320/(a*R3250 + b*R3390)) CO, ice
BD3400 3.4 ym band depth 1 — ((a*R3390 + b*R3500)/(c*R3250 + d*R3630)) carbonates; organics

CINDEX gauge 3.9 ym band (Rz7(53’(;;0_(%5765)(;%»96538)/_(3]750—3630) carbonates Pelkey et 211. (2007)



Which bands would you ratio?
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Distinguishing H,O ice from

hydrous minerals
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Color Composites from Continuous Images

Hematite

Kaolinite

Dolomite

Only three compositions can be

displayed at once (R,G,B)




Spectral Classification
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Supervised versus Unsupervised Classification

m “Unsupervised — Classes are determined by the
computer. Also referred to as * clusteting

m “Supervised” — Classes are specified by analyst,
typically via extraction of spectra from training
areas 1n the scene.



UNSUPERVISED CLASSIFICATION SUPERVISED CLASSIFICATION

l

SIFARATE DATA
INTO GROUPS
WITH CLUSTIRING l

l CHOOSE TRAINING
PIXILS FOR
EACH CATIGORY

CLASSIFY DATA

INTO GROUPS l

|

ASSIGN

>

Yis

‘AYI&'?CYORY

CLASSIHY DATA
INTO CATIGORIES
OLNNID

¥

Yis




Supervised Classifications
(all available in ENVI!)

Parallelepiped




Minimum Distance




Minimum Distance Method
Minimum distance to means classification
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Morro Bay, Minimum Distance Classification
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Spectral Angle Mapper

“dark point”




Spectral Angle Mapper




Unsupervised Techniques: K-Means

m User specifies # of classes. Algorithm first assigns
randomly distributed class centers in n-D space,
clusters pixels according to min. distance. Next
iteration, finds mean coordinates of clusters, uses these
locations as new class centers and re-clusters by
distance. Continues until means move less than a
specified threshold between subsequent iterations.

Most useful when you know the number of spectral units
in a scene a priori, but don” t necessarily know where they
fall within the scene (so supervised techniques aten’ t

possible).
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Now the centroids are moved to the & Steps 2 & 3 are repeated until a suitable &
center of their respective clusters. level of convergence has been reached.

Demo:

http://home.dei.polimi.it/matteucc/Clustering/ tutorial_html/AppletKM.html



Unsupervised Techniques: Isodata

m Similar to K-means, except user doesn’ t need to
specify number of classes. Algorithm starts with
randomly spaced trial classes, calculates minimum
distances to cluster all pixels in the scene. Before next
iteration, algorithm looks at the statistics of each class
to see if any should be split, merged, or deleted.
[terations continue until number of pixels in each class
changes less than some threshold between iterations.

Most useful when you don’ t have a clue how many spectral
units are likely to be present in a scene.



Correlated vs. Uncorrelated Data




3-Band Correlations in RGB

Data only occupy a small fraction
of the total colors available for

display.




Intensity, Saturation, and Hue
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Most of the
compositional
information is in hue
and saturation.



 An “HIS stretch” usually involves converting
RGB coordinates for pixels into measures of
hue, intensity, and saturation. Intensity and
saturation can be stretched to more completely
fill color space.

* Often, another higher spatial resolution, mono-
or pan-chromatic band is used to replace the
original intensity data. The lower resolution
multispectral data are used to provide hue and
saturation in the merged (or * fused”) output
image. Called “Pan-sharpening.”






Principal Component Analysis (PCA)

Multispectral, and especially hyperspectral data have more
information from more wavelengths than our brains can
process!

Often, one band 1s highly correlated with another

PCA offers a way to reduce the inherent ~dimensionality of a
multi- or hyperspectral dataset into the smallest number of
independent dimensions

Makes contrast enhancement of different classes much better



Principal Component Analysis (PCA)
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1. Move origin of coordinate system to center (mean) of data
cloud.

2. Find a rotation of axes that maximizes the variance of the
data along the new orientations of the axes.

3. Stretch the data along the new axes to fill the color space —
points are no longer correlated.



PCA Terminology

m Higenvector: Describes the shift and orientation
of the new axes. For n input bands, you get n
output bands with n associated eigenvectors

m Figenvalue: Describes the magnitude of the
variance along the new axes (prior to stretching).
There 1s one eigenvalue for each axis.



PCA Advantages

m PCA analysis can simultaneously consider all input

bands.

m Has the effect of reducing the “dimensionality~ of the
data (fewer # of bands contain most of the information)
because higher-order axes don' t contain as much
independent (uncorrelated) information.

m More completely fills the available color space when
PCA bands are displayed in RGB triplets



PCA Disadvantages
B Can be difficult to understand PCA bands in

terms of composition — no one-to-one
correspondence between a particular PCA band
and any one input band.

Typically, PCA bands are used to map the spectral/
compositional units in a scene. Once the pixels
belonging to a particular spectral unit have been
identified, compositional identifications are made
using spectra for those pixels extracted from the

original input pixels (pre-PCA).



Decorrelation Stretching

After performing a PCA
rotation and stretching
the data, the axes are
rotated back to their
original (input)
orlentations.

Preserves original sense
(11 7
ot color.
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