Planetary Atmospheres

Structure

Composition
Clouds
Photochemistry
Meteorology
Atmospheric Escape

Troposphere: Where condensable gases form clouds. dT/dz < 0

Stratosphere: dT/dz > 0

Mesosphere: dT/dz < 0

Thermosphere: dT/dz > 0

Exosphere: Roughly Isothermal

Lower atmosphere
(opaque) is dominantly
heated from below and
will be conductive or
convective (adiabatic)

Upper atmosphere intercepts solar radiation and re-radiates it

There will be a temperature minimum where radiative cooling is most efficient (the tropopause)

Terrestrial Planets Atmospheric Thermal Structure

Mars, Venus, Earth all

- have warm tropospheres (and greenhouse gases)
- have warm thermospheres which absorb Solar X rays

Only Earth has

- a warm stratosphere
- an UV-absorbing gas (O₃)

All three planets have warmer surface temps due to greenhouse effect

© 2005 Pearson Education, Inc., publishing as Addison Wesley

Titan's Atmospheric Thermal Profile

Balance between greenhouse and anti-greenhouse effects:

Greenhouse effects cause +21 K increase in surface temperature over T_{eq}

Anti-greenhouse from haze layer absorption of sunlight is responsible for -9 K difference

Net ~12 K increase over T_{eq}

Stratopause at ~250 km (organic-trapped radiation)

Giant Planet Atmospheric Structure

Note position and order/composition of cloud decks

Radiation interactions are responsible for the structure we see:

- Troposphere
 - absorbs IR photons from the surface
 - temperature drops with altitude
 - hot air rises and high gas density causes storms (convection)
- Stratosphere
 - lies above the greenhouse gases (no IR absorption)
 - absorbs heat via Solar UV photons which dissociate ozone (O₃)
 - UV penetrates only top layer; hotter air is above colder air
 - no convection or weather; the atmosphere is stably stratified
- Thermosphere
 - absorbs heat via Solar X-rays which ionize all gases
 - contains ionosphere, which reflects back human radio signals
- Exosphere
 - hottest layer; gas extremely rarified; provides noticeable drag on satellites

Planetary Atmospheres

Structure
Composition
Clouds
Photochemistry
Meteorology
Atmospheric Escape

Spectra: Observing the Atmosphere

Light emitted from a perfect black body generates a continuous spectrum. However, as radiation emitted from the Sun passes through its cooler photosphere, wavelengths of light are absorbed, resulting in absorption lines or a 'Fraunhofer absorption spectrum' in solar radiation.

Spectra

Each element/molecule has its own spectral 'fingerprint' that can be observed in either emission or absorption depending on its temperature relative to the light source.

Cooler ⇒ Then wavelengths will be absorbed and appear dark in the spectrum.

Spectra

Just a reminder:
These wavelengths of
emission/absorption are
uniquely and directly
determined by the
quantized energy
transitions of electrons
in a given atom/
molecule.

$$E_{ul} = hv = hc / \lambda$$

Spectra: Sources

In observing spectral emission/absorption features in a planetary atmosphere, one must consider the primary sources of the continuum spectra.

Reflected sunlight:

Generally in the UV, visible and near-infrared wavelengths

Example: Uranus and Neptune appear green/blue due to the presence of methane in their atmospheres. Methane absorbs the red part of the visible spectrum, causing mostly green/blue light to be reflected.

Thermal radiation:

From the 'surface' or deeper atmospheric layers of the planet, generally peaks in the infrared and radio wavelengths due to the temperature of the 'surface' generating a black body radiation curve.

Ground-based spectra: Fraunhofer + Planetary + Telluric

...or just take your own light source and instrument to the planet! (Curiosity's Tunable Laser Spectrometer, SAM instrument suite)

Webster & Mahaffy (2011) 3057.8 3058.0 OC18O 3590.0 3590.2 3594.2 Laser Wave Number (cm-1)

Distinguishing CH₄ sources via isotopes

Atreya et al. (Mars Methane Workshop)

Methane on Earth – mainly biogenic...

Atreya et al. (2007)

Mumma et al. (2009) - from telescopes on Earth

Three lines resolved; no unidentified spectral features

Mumma et al. (2009): seasonal, spatial variations

- Daytime highs + southerly winds at night → source to the north??
- No clear correlation with T, P, humidity, radiation, bedrock composition
- Possible anticorrelation with atmospheric O₂?