Planetary Surface Processes

Cratering Gravity Tectonics Volcanism Winds Fluvial Glacial Chemical weathering

Any crustal deformation caused by motions of the surface. Deformation of a material due to an applied *stress* (force per unit area) is characterized by the *strain* (dimensionless):

Any crustal deformation caused by motions of the surface. Deformation of a material due to an applied *stress* (force per unit area) is characterized by the *strain* (dimensionless)

Elastic materials will respond to stress, but regain original properties when stress is removed Hooke's law: $\sigma_l = E \varepsilon_l$ *E* is Young's modulus (like a spring constant)

> $\sigma_s = 2\mu \varepsilon_s$ μ is shear modulus

 $p = -K \varepsilon_V$ *K* is bulk modulus

Any crustal deformation caused by motions of the surface. Deformation of a material due to an applied *stress* (force per unit area) is characterized by the *strain* (dimensionless)

Viscous materials will deform or flow in a slow smooth way when stress is exerted

Newtonian viscosity: $\sigma_s = 2\eta \ d\varepsilon_s / dt$ η is viscosity

Materials can behave both elastically and viscously; viscoelastic materials may behave elastically on short time periods but viscously on longer (geologic) timescales ... *silly putty!*

Usually at low temperatures materials tend to be brittle, and at high temperatures they tend to be ductile (much deformation before fracturing)

Elastic vs. plastic deformation

Horizontal Stresses

Reverse fault

Faults

 Faults are where the crust fails, causing deformation

Normal (extension)

Normal fault =

 footwall displaced Thrust
 upward, reverse (compression)
 (thrust) fault =
 displaced
 downward
 Strike-slip
 (shearing)

SIMPLEST Tectonics -As planet cools

- Early global volcanism
 - Global expansion caused crust to crack
 - lava leaked through
- Later global contraction
 - Mantle and core cooled, compressed the crust
 - Compressional tectonics

Graben

- Extension stress
- Rift valley

Scarps

1. Downwelling plume develops in mantle and drags on crust

2. Crust buckles in response to compression

3. Crust thickens and a highland plateau develops

4. Downwelling ceases and highland spreads gravitationally

Vertical Stresses

C. Plume cools and moat and depresson form

Stresses from underlying plume pushing up crust from below

50 km

Tectonics on Mars

Tectonics on Mars

Fig. 6. Schematic sketch map of the exposed faults and units associated with the Syria center of faulting. Circled dot denotes center at 8°S, 100°W. Dashed circles represent future location of Tharsis shields.

Fig. 9. Schematic illustration of the fractures associated with the Pavonis I episode of faulting, center located at 4°S, 110°W and denoted by the circled dot. Dashed circles denote the future location of the large Tharsis shields.

Plescia & Saunders (1982)

Tectonics on Mars

Tension at smaller scales (Mars)

Tension at smaller scales (Earth)

Earthquakes!

Richter scale is logarithmic: $\log_{10}E = 12.24 + 1.44M_R$

DC Earthquake Devastation

Is Mars tectonically active today?

Wray & Ehlmann (2011)

Plate Tectonics

Strong convection drives recycling of crust on time scale of ~100 MY

Plate motions measured with accurate GPS Typically cm / year

Mid-Ocean Ridge

Mid-Ocean Ridge

Mid-ocean spreading rate measured from magnetic field reversal pattern

Ocean-continent convergence

Continental collisions → mountain ranges

Mountains along former plate boundaries

Plate tectonics shaped the Earth

- Seafloor recycling
 - Keeps the seafloor young
 - Ocean ridges and trenches

- Built and shaped the continents
 - Mountain ranges
 - Tectonic features (e.g. faults)
 - Volcanoes
 - Earthquakes

