Planetary Surface Processes

Cratering Gravity **Tectonics** Volcanism Winds Fluvial Glacial Chemical weathering

Volcanism

Melting of material (silicate, water, sulfur) inside a planet and its subsequent eruption onto the surface

Intrusive vs. extrusive features

Volcanic Activity Recipe

• Heat source(s) for melting:

1. Generated from accretion during planet formation and continuing differentiation

2. Radioactive nuclides (radioactive decay in terrestrial planets/bodies)

3. Tidal interactions between bodies (moons orbiting around planets, planets elliptically orbiting close to their stars, etc.)

Buoyant material below the crust/surface of a planet
 Buoyancy problem for H₂O cryovolcanism?

Volcanic Activity Types

Two **types** are due to plate tectonics, from either:

- 1. Subduction zone eruptions
- 2. Eruptions along mid-ocean ridges

Third type:

3. Hot spots or mantle 'plumes'

Styles of eruptions:

1. Explosive - Magmas rich in volatiles and with high viscosity (silica rich). Gas cannot escape or bubble out of the highly viscous magma (Mt. St. Helens style)

2. Effusive - Basaltic magmas are low viscosity and allow volatiles to bubble off (Hawai' i style eruptions)

Volcanism: three different settings

Explosive volcanism most common at subduction zones

Stratovolcano

Martian bomb in reworked ash deposits?

Squyres et al. (2007)

Hawaiian & Samoan Island Chains are due to mantle 'plumes'

Jayne Doubette, WHDI

Hot spot volcanism: Earth's tallest mountain

Mauna Kea, Mauna Loa are low-slope, rounded shield volcanoes

Hot spot volcanism without plate motion

Hawaiian Volcanism

Hawaiian Volcanism

Hawaiian Volcanism: active lava tube!

Lunar lava tubes

Martian pit craters and chains

Calderas, cratered cones

(From Neukum et al., 2004, Nature, v. 432, p. 972.)

Lunar maria: former seas of lava

- Effusive volcanism, but most vents/fissures now buried
- Possible lunar pyroclastics are an area of ongoing research

Lunar sinuous rilles

Lunar sinuous rilles

Venusian sinuous rilles

Comparison to Martian valleys

Volcanism on Io

Courtesy of NASA/John Hopkins Univ Applied Physics Laboratory/Southwest Research Institute

Volcanism on Io

Planetary Surface Processes

Cratering Gravity **Tectonics** Volcanism Winds **Fluvial** Glacial Chemical weathering

Fluvial Processes

 Erosion, transport, and deposition of material by liquid flowing across a planetary surface

Dendritic Valley Networks

Dendritic Valley Networks

from Greek "dendron" (tree)

Self-similar ("fractal") geometry

Topography influences valley forms

Valley networks (yellow)

Evidence for ancient precipitation belt? Some flow into/out of paleolake basins

Shallow ponds at Meridiani Planum

Grotzinger et al. (2006)

CH₄ Lakes on Titan

Lakes on Titan

- Specular reflection confirms liquid

 minimal waves
- Some lakes evaporating over time?
- Cobbles rounded by fluvial transport?

Curiosity landing site

- Rounded stones emerging from matrix (more rounded than Atacama stream pebbles)
- Grain size/density, slope, Martian gravity, and estimated Shields parameter **→** *dm depths*

Fluvial sediment transport

Melosh (2011)

Fluvial sediment transport

Catastrophic Outflow Channels

chaos

degraded craters

chaos

Map of Mars Outflow Channels

Concentrated east of Tharsis in topographic trough

Flood Discharge Comparison (m³/s)

Baker, 2001

Martian Gullies

- Found predominantly at high latitudes (>30°), on pole-facing slopes
- Inferred to be young, < 10 MA cover young features like dunes and polygons
- Snowmelt? Melting of ground ice?
 Groundwater aquifers?!?
 Or not related to water at all?

NASA/JPL/Malin Space Science Systems

Gullies are active today!

Gullies look like water-carved features...

...but they're active in the winter time! \rightarrow related to CO_2 frost?

Recurring slope lineae: active in summer

Planetary Surface Processes

Cratering Gravity **Tectonics** Volcanism Winds Fluvial Glacial Chemical weathering

Ground Ice (and hydrated minerals): Evidence from Neutron Spectroscopy

Data from Mars Odyssey Gamma Ray Spectrometer, see for example Feldman et al. 2002

Ice revealed by impacts

Phoenix observed ice directly

Polygonal patterned ground - Phoenix

Polygonal patterned ground - HiRISE

Contraction crack formation

Melosh (2011)

Glaciers on Mars

Fastook et al. 2008

A glacier at equilibrium

Flow velocity is not uniform

Overhead view:

Glacial creep

Melosh (2011)

